# LNG as a Marine Fuel in the United States

Alle ?



Energy & Environmental Research Associates

April 8, 2024

Introduction

# Introduction

- International and domestic shipping emit over **1 billion** metric tonnes of carbon dioxide (CO<sub>2</sub>) each year
- IMO net-zero goal by 2050
- Liquefied natural gas (LNG) is a growing choice for shippers
  - Low sulfur oxide (SOx) emissions
  - Lower exhaust CO<sub>2</sub> emissions than conventional marine fuels
- LNG is primarily methane  $(CH_4)$  and is <u>not</u> a low GHG fuel
  - $\circ$  27-30x more potent a GHG than CO<sub>2</sub> over 100-years
  - 82.5x more potent over a 20-year time period
- Unburned CH<sub>4</sub> from ships + supply chain CH<sub>4</sub> emissions have significant implications for climate change, human health, and environmental justice

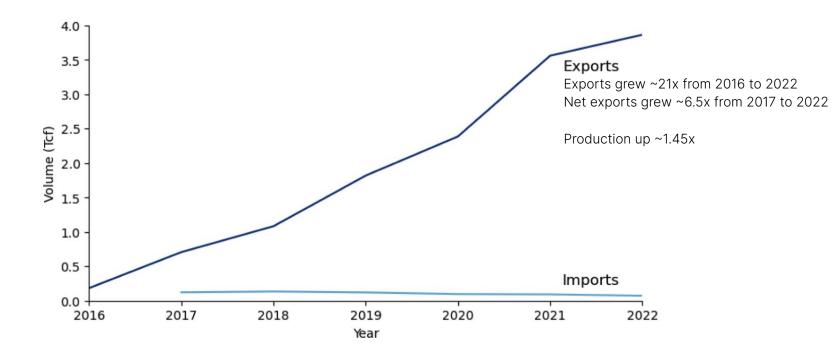


# Table of Contents

# 1) LNG Trade

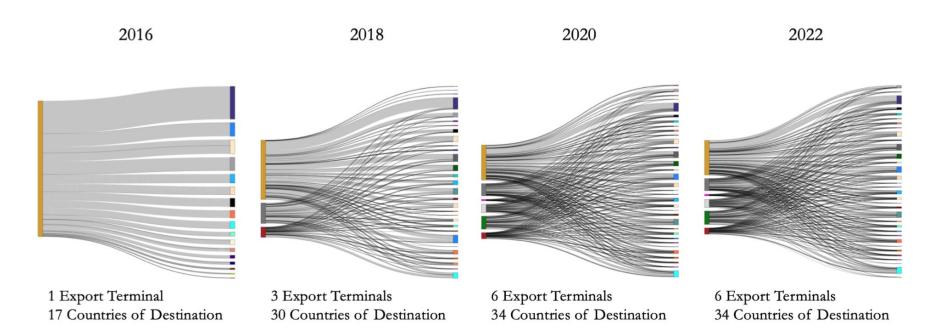
- 2) LNG Value Chain
- 3) LNG Vessels
- 4) Vessel Movements
- 5) Engine Emissions



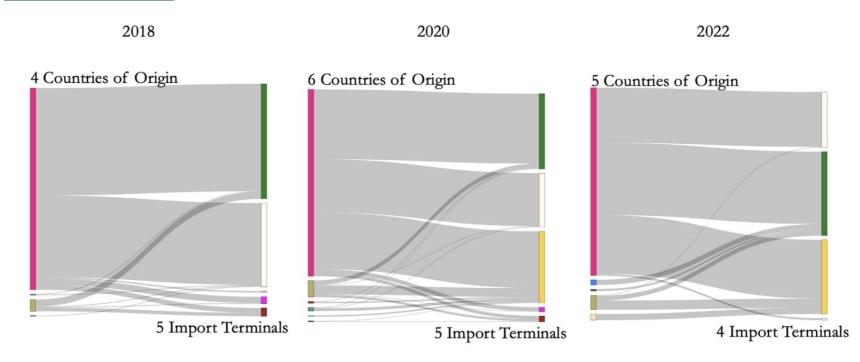

LNG Vessels

**Vessel Movements** 

**Engine Emissions** 


LNG Trade

### **U.S. LNG Imports and Exports**




LNG Trade

## U.S. LNG Export Partners



# U.S. LNG Import Partners



### LNG Trade



LNG Vessels

**Vessel Movements** 

**Engine Emissions** 

# LNG Supply Chain

> 99.9% of U.S. Exports are by vessel

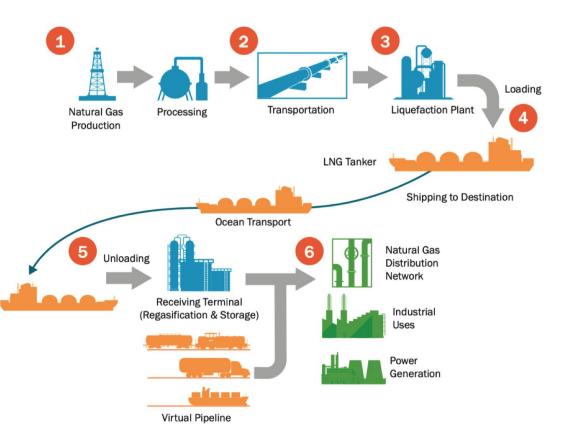



Diagram of the LNG value chain from production to end-use (Office of Fossil Energy, 2020).

Liquefaction

28 Projects

**20** Operational**8** Under construction

~10.8/~13.0 Bcf/d Baseload/Peak Capacity

**~18.7/~22.1 Bcf/d** Baseload/Peak Capacity (Projected)

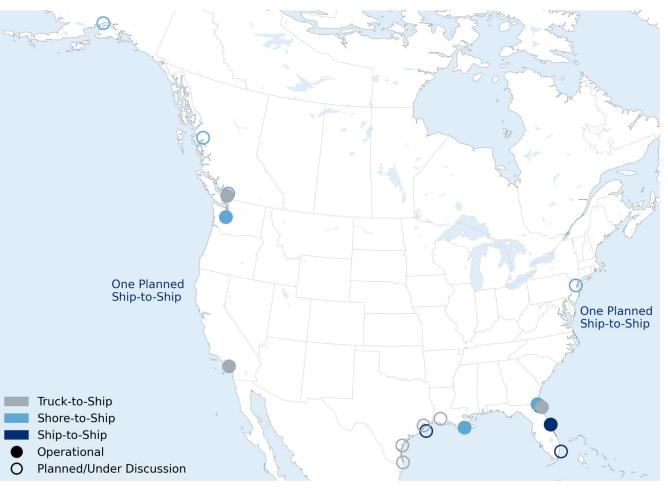


Bunkering

Truck-to-Ship

• **3** Existing / 4 Planned

Shore-to-Ship


• 3 Existing / 1 Planned

Ship-to-Ship

• **3** Existing / 5 Planned

**31** LNGBVs globally **15** on order

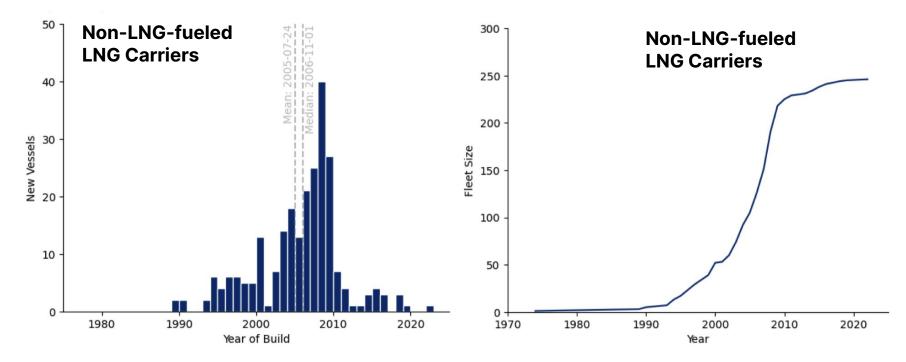
**4** Jones Act LNGBVs**4** on order

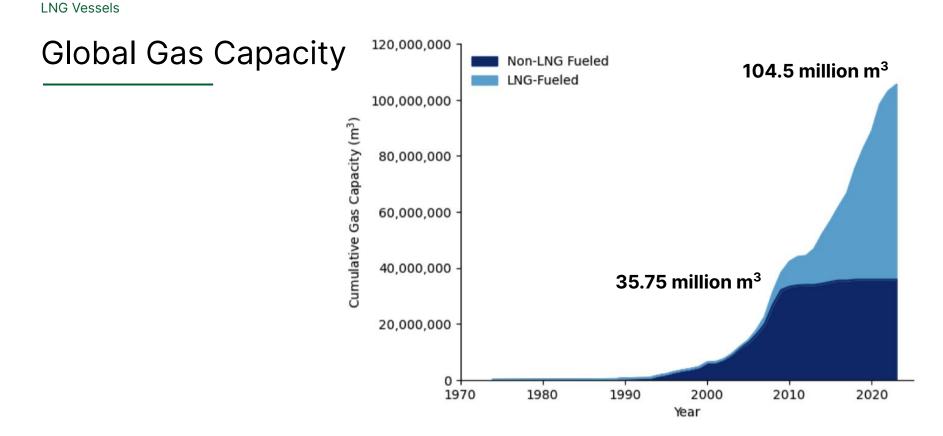


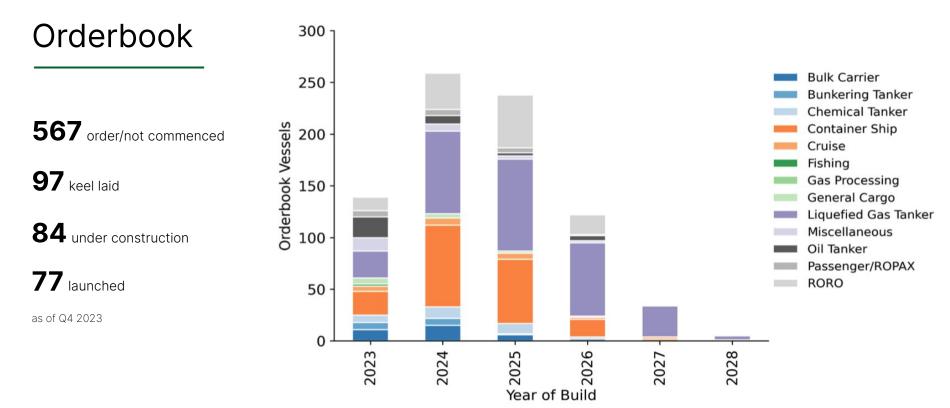
### LNG Trade

### LNG Value Chain




**Vessel Movements** 


**Engine Emissions** 


### **Global LNG-Fueled Fleet**



### **Global LNG-Carrying Fleet**



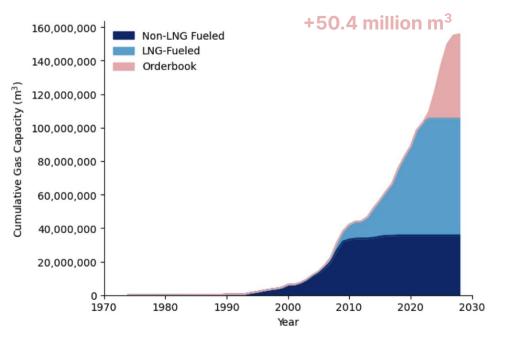




### Orderbook Statistics as of Q4 2023

| Ship Type            | Count | Mean DWT | Std.    | Min. DWT | 25%     | 50%     | 75%     | Max.<br>DWT |
|----------------------|-------|----------|---------|----------|---------|---------|---------|-------------|
| Bulk Carrier         | 34    | 185,492  | 55,933  | 5,560    | 207,000 | 209,800 | 210,000 | 210,000     |
| Bunkering Tanker     | 15    | 5,751    | 2,744   | 1,500    | 4,000   | 5,300   | 7,450   | 12,351      |
| Chemical Tanker      | 30    | 19,213   | 12,306  | 6,600    | 9,000   | 17,999  | 22,554  | 50,000      |
| Container Ship       | 183   | 120,493  | 54,293  | 21,023   | 82,000  | 131,000 | 160,000 | 230,000     |
| Cruise               | 23    | 10,486   | 5,402   | 1,000    | 6,250   | 10,509  | 13,500  | 19,750      |
| Fishing              | 2     | 8,650    | -       | 8,650    | 8,650   | 8,650   | 8,650   | 8,650       |
| Gas Processing       | 1     | 95,000   | -       | 95,000   | 95,000  | 95,000  | 95,000  | 95,000      |
| General Cargo        | 12    | 26,533   | 27,185  | 7,800    | 8,700   | 17,500  | 26,000  | 82,000      |
| Liquefied Gas Tanker | 300   | 86,500   | 14,427  | 1,280    | 81,000  | 92,312  | 93,000  | 128,845     |
| Miscellaneous        | 25    | 903      | 2,580   | -        | -       | -       | 351     | 12,000      |
| Oil Tanker           | 36    | 152,712  | 102,409 | 4,998    | 112,820 | 114,000 | 300,000 | 320,000     |
| Passenger/ROPAX      | 19    | 5,687    | 3,262   | 600      | 3,448   | 5,805   | 8,475   | 11,742      |
| RORO                 | 119   | 18,124   | 2,676   | 5,385    | 18,000  | 18,600  | 19,000  | 23,942      |

### **Orderbook Gas Capacity**


**316** vessels w. gas carrying capacity

294 LNG tankers

12 LNG bunkering tankers

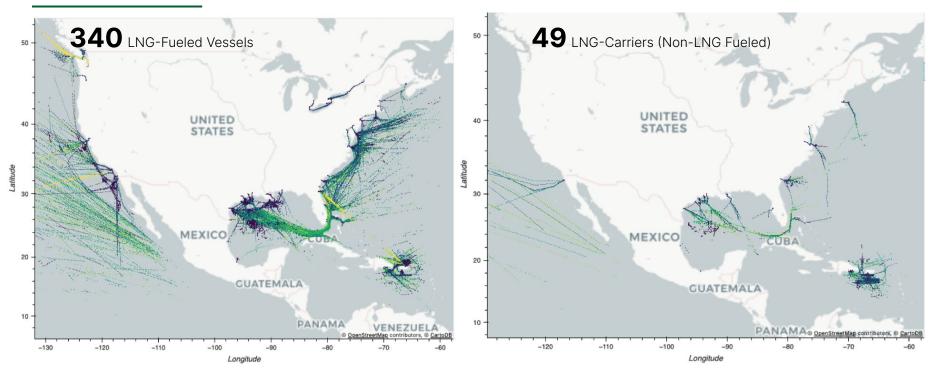
**10** Miscellaneous, LPG,  $CO_2$  etc.

as of Q4 2023



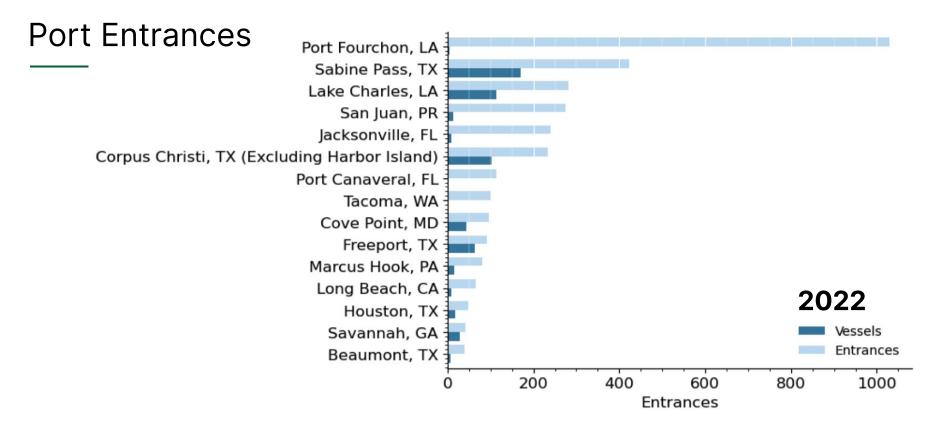
LNG Vessels

LNG Trade




**Vessel Movements** 

**Engine Emissions** 


Vessel Calls

### AIS Movements in 2022



Energy & Environmental Research Associates

Vessel Calls



### Port Entrances

2022

**Bold** ports with import/export terminals Blue different consecutive ports

Energy & Environmental Research Associates

| Port A             |        | Port B             | Voyages | Entrance<br>ΔT (h) |
|--------------------|--------|--------------------|---------|--------------------|
| Port Fourchon, LA  |        | Port Fourchon, LA  | 995     | 18                 |
| Jacksonville, FL   |        | San Juan, PR       | 202     | 80                 |
| San Juan, PR       |        | Jacksonville, FL   | 202     | 88                 |
| Sabine Pass, TX    | > ?>   | Sabine Pass, TX    | 197     | 1,000              |
| Lake Charles, LA   | > ?>   | Lake Charles, LA   | 126     | 1,062              |
| Tacoma, WA         |        | Tacoma, WA         | 97      | 168                |
| Corpus Christi, TX |        | Corpus Christi, TX | 93      | 812                |
| Port Canaveral, FL |        | Port Canaveral, FL | 89      | 96                 |
| Marcus Hook, PA    | → ? →> | Marcus Hook, PA    | 50      | 692                |
| Corpus Christi, TX | > ?>   | Sabine Pass, TX    | 47      | 1,036              |
| San Juan, PR       |        | San Juan, PR       | 46      | 235                |
| Sabine Pass, TX    | > ?>   | Lake Charles, LA   | 45      | 1,100              |
| Sabine Pass, TX    | > ?>   | Corpus Christi, TX | 44      | 1,007              |
| Lake Charles, LA   | → ? →> | Sabine Pass, TX    | 40      | 1,098              |
| Long Beach, CA     |        | Honolulu, Hl       | 39      | 151                |
| Oakland, CA        |        | Long Beach, CA     | 38      | 50                 |
| Honolulu, Hl       |        | Oakland, CA        | 35      | 137                |
| Corpus Christi, TX | > ?>   | Lake Charles, LA   | 30      | 931                |
| Cove Point, MD     | > ?>   | Cove Point, MD     | 28      | 1,285              |

LNG Vessels

LNG Trade

**Vessel Movements** 

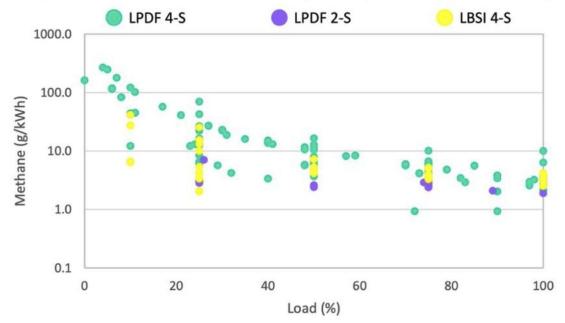


# LNG Engines

| Engine Type                       | Lean-Burn Low-Pr<br>Spark Ignition (LBSI) Dual Fue |                                                |                       | High-Pressure<br>Dual Fuel (HPDF)  |  |
|-----------------------------------|----------------------------------------------------|------------------------------------------------|-----------------------|------------------------------------|--|
| Power Stroke                      | Four-stro                                          | ke                                             | Two-stroke            |                                    |  |
| Power Range                       | Medium- & High-speed<br>0.5-8 MW                   | Medium-speed<br>1-18 MW                        | Slow-speed<br>5-63 MW | Slow-speed<br>>2.5 MW              |  |
| Fuel Cycle(s)*                    | Otto                                               | Otto (gas mode)<br>& Diesel (diesel mode)      |                       | Diesel                             |  |
| Ignition<br>Process               | Spark plug ignition of<br>air-gas mixture          | Constant volume homogeneous<br>air-gas mixture |                       | High-pressure compression-ignition |  |
| Pilot<br>Fuel                     | No                                                 | Yes                                            |                       |                                    |  |
| Nitrogen<br>Oxides<br>Performance |                                                    | Tier III                                       |                       | Tier II                            |  |

\*Diesel-cycle systems inject fuel at high pressures, for which heat is generated in the charge to ignite the fuel. Otto-cycle uses constant volume combustion of an air-fuel mixture at low pressures, with use of a spark plug or pilot fuel ignition.

Engine Emissions


# LNG Engine Emissions

| Engine Type                                               | LBSI 4-S   | LPDF 4-S    | LPDF 2-S  | HPDF 2-S  |
|-----------------------------------------------------------|------------|-------------|-----------|-----------|
| % of Fleet                                                | < 2%       | ~54%        | ~25%      | 15%       |
| E2/E3 CH <sub>4</sub> Slip<br>(gCH <sub>4</sub> /kWh)     | 2.0 - 5.5  | 2.0 - 13.5  | 2.1 - 3.5 | 0.2 - 0.3 |
| <25% Load CH <sub>4</sub> Slip<br>(gCH <sub>4</sub> /kWh) | 6.4 - 42.5 | 6.1 - 123.5 | 2.8 - 7.2 | NA        |

29.8 (GWP<sub>100</sub>) 82.5 (GWP<sub>20</sub>)

# LNG Engine Emissions

The Green Ray Project: 'Methane emission factors as a function of engine load for all engine types" (p.18)



LNG Vessels

LNG Trade

**Vessel Movements** 

**Engine Emissions** 



Health and Equity

### LNG, Health, and Equity

- Atmospheric CH<sub>4</sub> linked with ground-level Ozone formation
- Combustion criteria pollutants are low compared to conventional fuels, but upstream emissions from extraction, processing, and liquefaction can potentially impact air and water quality of nearby communities
- Extraction of unconventional natural gas, which accounted for 89% of U.S. production in 2022 and includes fracking, can lead to negative impacts on public health, increased air pollution, and water contamination.
- "Boomtowns" built around extraction can provide economic opportunities during expansion, but contractions can lead to increased social vulnerabilities for low-income groups and women, and increased crime and drug-use.
- LNG infrastructure is often co-located with areas with environmental justice concerns and high social vulnerability
  - Flaring and energy intensive operations increase local criteria pollution emissions

# **Analytical Conclusions**

- 1. U.S. LNG trade has grown > 20x since 2016. Production up 1.4x.
- 2. > 99.9% of U.S. LNG exports by vessel.
- 3. U.S. liquefaction capacity set to grow by ~1.7x.
- 4. U.S. bunkering locations set increase from 9 to 19 locations.
- 5. Global orderbook to add upwards of 50.4 million m<sup>3</sup> gas capacity.
- 6. LNG vessel entrances highest in the Gulf Coast region, Florida, and Puget Sound.

# **Policy Relevance**

- 1. Huge growth in trade and infrastructure in the U.S.
- 2. More than a thousand LNG vessels operating and on order  $\rightarrow$  long operational life
- 3. Engines can have a NOx  $CH_4$  tradeoff
- 4. CH<sub>4</sub> slip and upstream well-to-tank emissions can <u>increase</u> LNG life cycle emissions relative to conventional fuels
- 5. Policy are frameworks beginning to address  $CH_{4}$  emissions need to include WTW
- LNG as a marine fuel does not meet stated climate goals and can result in disproportionate impacts to socially vulnerable and environmental justice communities



Edward W. Carr, Ph.D. ecarr@energyandenvironmental.com